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Abstract

An efficient method for scalar advection is developed that selectively preserves monotonicity. Monotonicity preserva-
tion is applied only where the scalar field is likely to contain discontinuities as indicated by significant grid-cell-to-grid-cell
variations in a smoothness measure conceptually similar to that used in weighted essentially non-oscillatory (WENO)
methods. In smooth regions, the numerical diffusion associated with monotonicity-preserving methods is avoided. The
resulting method, while not globally monotonicity preserving, allows the full accuracy of the underlying advection scheme
to be achieved in smooth regions. The violations of monotonicity that do occur are generally very small, as seen in the tests
presented here. Strict positivity preservation may be effectively and efficiently obtained through an additional flux correc-
tion step.

The underlying advection scheme used to test this methodology is a variant of the piecewise parabolic method (PPM)
that may be applied to multi-dimensional problems using density-corrected dimensional splitting and permits stable semi-
Lagrangian integrations using CFL numbers larger than one. Two methods for monotonicity preservation are used here:
flux correction and modification of the underlying polynomial reconstruction.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The accurate simulation of the effectively inviscid transport of scalar fields such as temperature or the con-
centrations of chemical species plays an important role in the modeling of many physical systems. The inviscid
transport of a conservative scalar may be described by the conservation law
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where q, w and u are the density, scalar concentration and vector velocity fields, respectively. For simplicity,
we ignore any source and sink terms related to chemical reactions or changes in phase that might appear in
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more general applications and assume those processes are integrated in a separate fractional step. Note, how-
ever, that such processes may give rise to sharp gradients in w that must be handled accurately in the approx-
imation of (1).

It has long been recognized that numerical approximations to (1) often require a method that is monoto-
nicity preserving in the vicinity of discontinuities and poorly resolved gradients, but switches to a higher-order,
less diffusive formulation where the solution is smooth. One of the first techniques proposed for constructing
such a scheme is flux-corrected transport (FCT) [1]. The general FCT strategy [2] is to compute approxima-
tions to the true fluxes quw using both a low-order monotone method and a higher-order scheme. In regions
where there is no possibility of generating new maxima and minima, the solution is updated by computing the
divergence of the high-order fluxes. In other regions, the high-order fluxes are ‘‘corrected” to prevent the
development of new maxima and minima. One systematic problem with flux correction algorithms is that they
erroneously damp smooth extrema. As the phase of a wave shifts and its peak translates between a pair of grid
points over an interval longer than a single time step, there should be time steps in which the maximum grid-
point value of the function increases (for example, if the peak of a continuous function shifts from a position
midway between two grid points to exactly coincide with one of the grid points). Flux correction algorithms
do not distinguish between increases in the maximum of the grid-point values produced by the translation of a
wave crest and spurious increases created by non-monotone schemes in the vicinity of poorly resolved gradi-
ents. Furthermore, in many applications, only a small percentage of the grid cells in the entire domain actually
require flux correction or flux limiting, and throughout the remainder of the domain, significant computa-
tional effort is expended to apply a flux-limiting algorithm that is either unnecessary or detrimental.

Similar problems with the damping of smooth extrema are also encountered with a related class of flux-lim-
iter and slope-limiter methods in which the magnitude of the high-order flux is ‘‘limited” to keep the solution
total variation diminishing (TVD) [3–5]. Higher-order generalizations of the slope-limiter approach, in which
piecewise parabolas are fitted to finite-volume averages of w to estimate fluxes at the cell interfaces and these
parabolas are subsequently modified to ensure monotonicity preservation (PPM [6,7]), continue to suffer the
same type of spurious damping.

The damping of smooth well-resolved extrema may be avoided using WENO methods [8,9]. WENO meth-
ods estimate the fluxes in (1) using polynomial approximations to qw of identical order spanning different sets
of grid cells and compute the actual flux as a weighted average of the fluxes given by each of these polynomial
approximations. The weights are determined by the local smoothness of the polynomial approximation over
each stencil such that those regions which include sharp, poorly resolved gradients receive negligible weight-
ing. In smooth regions, the weights are computed to yield the highest possible order of accuracy.

WENO methods have been used with considerable success in a wide variety of applications, including those
considered here. Nevertheless in our tests, solutions to (1) obtained using a straight-forward implementation
of the fifth-order WENO approximation [9] required much more computational time than an FCT approxi-
mation of roughly similar accuracy. WENO methods also suffer from a tendency for the weights of the various
stencils to revert rather slowly to the underlying high-order method as the numerical resolution of a smooth
function improves [10].

Here we propose a hybrid method in which monotonicity preservation is enforced only in those regions
where simple WENO-motivated smoothness criteria indicate a poorly resolved steep gradient. As will be dem-
onstrated by several test problems in Section 4, two different implementations of this approach using PPM for
the underlying advection scheme preserve smooth extrema while minimizing spurious overshoots and under-
shoots better than the conventional fifth-order WENO method, while requiring far less computation time.
These hybrid methods can also be used in semi-Lagrangian formulations that enlarge the numerical domain
of dependence to permit stable integrations at CFL numbers greater than one.

A variety of additional strategies have been proposed for detecting ‘‘troubled cells” where limiters should be
applied to prevent spurious oscillations near a discontinuity while attempting to preserve smooth extrema [11].
Here we compare our WENO-motivated criteria to the troubled-cell identification methodology proposed by
Zerroukat et al. [12], which is a refinement of criteria proposed earlier by Sun et al. [13] and Nair et al. [14].

In the following, the underlying advection scheme and approaches for monotonicity preservation, which
include flux correction and modification of the underlying polynomial reconstruction, are described in detail
in Section 2. The WENO-motivated criteria for selective monotonicity preservation is presented in Section 3.
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One and two-dimensional test problems comparing the various approaches are analyzed in Section 4, and Sec-
tion 5 contains the conclusions.

2. Formulation of advection scheme

The underlying numerical method for advection is a forward-in-time method presented by Skamarock [15]
that implements dimension-splitting in an effective manner and can be extended to CFL numbers larger than
one.

2.1. The Eulerian algorithm in one dimension

The numerical approximation to (1) in one dimension is expressed in the conservation form
ðq/Þnþ1
i � ðq/Þni

Dt
þ

fiþ1
2
ð/nÞ � fi�1

2
ð/nÞ

Dx
¼ 0; ð2Þ
where ðq/Þni is an estimate of the mass of the scalar qw at time tn � nDt integrated over the cell centered at
xi � iDx, and fiþ1

2
ð/nÞ is an estimate of the mass flux of the scalar quw through the cell interface at xiþ1=2 over

the period tn 6 t 6 tnþ1. The velocities uiþ1=2 are defined at the cell interfaces. In the present work, the fluxes
fiþ1=2ð/nÞ are defined using the piecewise parabolic method (PPM) of Colella and Woodward [6]. In this ap-
proach, approximate scalar values at the cell faces are computed from the cell averages in the four surrounding
cells:
/̂iþ1
2
¼ ½7ð/n

i þ /n
iþ1Þ � ð/

n
i�1 þ /n

iþ2Þ�=12: ð3Þ
The flux may be computed in one of two ways. In the FCT formulation, no information about the polynomial
reconstruction is required (e.g. whether the reconstruction has an extrema), and the flux is given by [15]:
f ppm

iþ1
2

ð/nÞ ¼ ðquÞiþ1
2
½/n

i þ ð1� CÞð/̂iþ1
2
� /n

i Þ � Cð1� CÞð/̂iþ1
2
� 2/n

i þ /̂i�1
2
Þ� ð4Þ
for ðquÞiþ1
2
> 0. Here C ¼ ðquÞiþ1

2
Dt=ðqDxÞ is the Courant number. The formulas for negative ðquÞiþ1

2
are given

in the Appendix.
In (4), and also below in (7), ðquÞiþ1=2 is an estimate of the total mass flux through the same cell interface

over the time tn
6 t 6 tnþ1. If density is being predicted through the integration of the continuity equation,

ðquÞiþ1=2 is the value used in that calculation. If the flow is non-divergent and the density is a uniform q0,
the density can be divided out of the problem and uiþ1=2 can be estimated by interpolating or extrapolating
the velocity field to time tnþ1=2.

If the underlying parabola is to be modified to preserve monotonicity, the scalar distribution in the cell
upwind of xiþ1

2
is reconstructed for ðquÞiþ1

2
> 0 as:
/ðnÞ ¼ a0 þ a1nþ a2n
2; ð5Þ
where n ¼ ðxiþ1
2
� xÞ=ðxiþ1

2
� xi�1

2
Þ and
a0 ¼ /n0
; a1 ¼ �4/n0

� 2/nf
þ 6�/; a2 ¼ 3/n0

þ 3/nf
� 6�/ ð6Þ
with /n0
¼ /̂iþ1

2
, /nf

¼ /̂i�1
2
, and �/ ¼ /i. Here, the coordinate n increases (with decreasing x) from zero at xiþ1

2

to one at xi�1
2
, and / assumes values of /n0

at n ¼ 0 and /nf
at n ¼ 1. The cell-average scalar value between

n ¼ 0 and n ¼ 1 is �/. This definition of n places the origin at the face where the flux will be computed. The
flux at xiþ1

2
is:
f ppm

iþ1
2

ð/nÞ ¼ ðquÞiþ1
2

1

jCj

� �Z jCj

0

/ðnÞdn;

¼ ðquÞiþ1
2
ða0 þ a1jCj=2þ a2jCj2=3Þ:

ð7Þ
Note that (7) applies regardless of the sign of uiþ1
2
.
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The derivation of the polynomial reconstruction and computation of the flux presented here loosely follows
that in [16]. The original method of Colella and Woodward [6] included modifications of the parabola to pre-
serve monotonicity; a method that modifies a0, a1 and a2 to make the reconstruction monotonic is discussed in
Section 2.4. Polynomial reconstructions of different order may also be employed, e.g. the piecewise cubic
method of [12], and different techniques may be used to compute /̂iþ1

2
, as in [16].

2.2. Extension two higher dimensions

The preceding is generalized to multiple dimensions using mass-corrected Strang splitting [17]. If the con-
tinuity equation is being integrated as part of a full dynamical model such that
1 If t
would
qnþ1
i;j ¼ qn

i;j þ Dt
ðquÞi�1

2;j
� ðquÞiþ1

2;j

Dx
þ
ðqvÞi;j�1

2
� ðqvÞi;jþ1

2

Dy

 !
ð8Þ
the mass flux (qu) through each interface must be saved for the scalar advection algorithm.1 The mass conti-
nuity equation is then reintegrated over each split-step using these fluxes to allow a correct diagnosis of the
scalar concentration at the end of each split-step.

In two dimensions, the method is:
q0i;j ¼ qn
i;j þ Dt½ðquÞi�1=2;j � ðquÞiþ1=2;j�=Dx;

ðq/Þ0i;j ¼ ðq/Þni;j þ Dt½fi�1=2;jð/nÞ � fiþ1=2;jð/nÞ�=Dx;

/0 ¼ ðq/Þ0=q0;
qnþ1

i;j ¼ q0i;j þ Dt½ðqvÞi;j�1=2 � ðqvÞi;jþ1=2�=Dy;

ðq/Þnþ1
i;j ¼ ðq/Þ0i;j þ Dt½gi;j�1=2ð/0Þ � gi;jþ1=2ð/0Þ�=Dy;

/nþ1 ¼ ðq/Þnþ1
=qnþ1:

ð9Þ
Here, vi;jþ1=2 and gi;jþ1=2 are the velocity and the scalar mass flux through the ‘‘north” face of grid cell ði; jÞ.
Note that even if the flow is non-divergent and the density constant throughout the domain, it is still necessary
to compute q0i;j in the first step of (9), because the velocity gradient ou=ox is not generally zero. Also, the Cou-
rant number in the second split step is computed C ¼ ðqvÞjþ1

2
Dt=ðq0DyÞ. Strang splitting, in which the x-direc-

tion integration precedes the y-direction integration on the odd time steps and follows it on the even steps, is
used to preserve second-order accuracy in time.

2.3. Flux form semi-Lagrangian advection

The individual split steps may be integrated using a semi-Lagrangian approximation to the flux divergence
that extends the numerical domain of dependence beyond the adjacent upstream grid cell and allows stable
computations with CFL numbers greater than unity [18,19]. The following formulae are for positive velocities,
the corresponding expressions for negative velocities are given in the Appendix.

As a first step, the integer shift s and fractional Courant number eC for each cell interface are chosen to
satisfy
eCqn
i�s þ

Xs

k¼1

qn
i�kþ1 ¼

Dt
Dx
ðquÞiþ1=2 if ðquÞiþ1=2 P 0; ð10Þ
subject to the constraint that 0 6 eC 6 1. If q is uniform and is eliminated from (10), the right side is just the
Courant number C, and s is the integer part of C. Otherwise, the right side is proportional to the mass flux used
in (8) to determine qnþ1, and s is determined through trial and error by systematically increasing the number of
terms in the summation, beginning at zero.
he scalar advection is integrated with a larger time step than that used to integrate the more active dynamical fields the mass fluxes
be summed over a complete cycle of fast-dynamics sub-steps.
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Let ~u ¼ eCDx=Dt. The scalar mass flux at xiþ1=2 is computed as
2 Ex
fiþ1
2
¼ 1

Dt

Xs

k¼1

ðqn/nDxÞi�kþ1 þ ~f i�sþ1
2
; ð11Þ
where ~f i�sþ1=2, the scalar flux arising from the non-integer part of the Courant number, is computed using
either (4) in the FCT formulation, or (7) in the modified parabola approach, except that in both formulae
ðquÞiþ1=2 is replaced by qn~u and C is replaced by eC .

2.4. Approaches for monotonicity and positivity preservation

The behavior of selective monotonicity preservation will be investigated in the context of two different
approaches to monotonicity preservation: flux corrected transport and polynomial modification. The FCT
approach modifies the flux directly, while the latter modifies the underlying polynomial reconstruction from
which the flux is computed. The mechanics of these two approaches are described below.

2.4.1. Flux corrected transport (FCT)

As in the standard FCT approach, the flux is composed of a monotonicity-preserving upwind flux
f up

iþ1
2

ð/nÞ ¼
ðquÞiþ1

2
/n

i ; if ðquÞiþ1
2
> 0;

ðquÞiþ1
2
/n

iþ1; otherwise;

(
ð12Þ
and a ‘‘corrected” higher-order increment such that
fiþ1
2
¼ f up

iþ1
2

þ riþ1
2
f cor

iþ1
2
; ð13Þ
where 0 6 riþ1=2 6 1, and f cor
iþ1

2
¼ f ppm

iþ1
2

� f up

iþ1
2

is the difference between the flux from the higher-order PPM meth-
od and the upstream flux.

As a preliminary step to evaluating riþ1
2
, an approximate ‘‘transported and diffused” solution is evaluated

using the upwind flux
ðq/Þtdi ¼ ðq/Þni þ
Dt
Dx
ðf up

i�1=2 � f up
iþ1=2Þ; ð14Þ
the sum of the correction fluxes directed out of the cell centered at xi is computed as f out
i ¼ maxðf cor

iþ1=2; 0Þ�
minðf cor

i�1=2; 0Þ, and the sum of the fluxes directed into the cell at xiþ1 is calculated as f in
iþ1 ¼

maxðf cor
iþ1=2; 0Þ �minðf cor

iþ3=2; 0Þ. Finally let
/max;min
i ¼ max;minð/n

i�s�1;/
n
i�s;/

n
i�sþ1;/

td
i�1;/

td
i ;/

td
iþ1Þ; ð15Þ
where s is zero in Eulerian implementations, and is the integer shift defined by (10) or (A.2) in semi-Lagrang-
ian integrations.

Assuming f cor
iþ1=2 > 0, the correction factor for monotonicity preservation is defined following [2,15] as2
rmon
iþ1

2
¼ max 0;min 1;

½ðq/Þtdi � q̂i/
min
i �Dx

Dtf out
i þ �2

;
½q̂iþ1/

max
iþ1 � ðq/Þtdiþ1�Dx

Dtf in
iþ1 þ �2

 !" #
; ð16Þ
where �2 is a small parameter chosen to avoid division by zero and q̂ ¼ q0 if q is constant; otherwise q̂ is the
density as updated in the current step. In the case of no splitting, or the final step of the Strang split method
(9), q̂ ¼ qnþ1; in first fractional step of (9), q̂ ¼ q0.

In the final step, the cell averages are updated to time tnþ1 using
ðq/Þnþ1
i ¼ ðq/Þtdi þ

Dt
Dx
ðrmon

i�1
2

f cor
i�1=2 � rmon

iþ1
2

f cor
iþ1=2Þ: ð17Þ
pressions for f cor
iþ1=2 < 0 appear in the Appendix.
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2.4.2. Polynomial modification (PMod)

The enforcement of monotonicity in polynomial reconstructions as a long history in slope-limiter methods
[5] and in the piecewise parabolic method [6] and its successors, e.g. [18]. In the present work, a monotonicity-
preserving reconstruction is ensured as follows:

(1) The estimates of the scalar value at the cell faces are required to lie within the range of values in the
neighboring cells, by defining
/̂mon
iþ1

2
¼ minð/max

iþ1
2
;maxð/min

iþ1
2
; /̂iþ1

2
ÞÞ; ð18Þ

where /max ;min

iþ1
2

¼ max;minð/i;/iþ1Þ. These monotonic estimates replace the corresponding non-mono-

tonic estimates of / at the cell interfaces such that /n0
¼ /̂mon

iþ1
2

and /nf
¼ /̂mon

i�1
2

for ðquÞiþ1
2
> 0, which

in turn modifies the coefficients of the reconstructed parabola according to (6).

(2) If the resulting parabolic has an extrema in the interior of the grid cell (the condition for which is

/0ðnÞ ¼ 0 for 0 < n < 1, or equivalently 0 < �a1=ð2a2Þ < 1), then the polynomial reconstruction is mod-
ified as follows:

(a) If ð�/� /nf
Þð�/� /n0

Þ > 0, the parabola is replaced by the piecewise constant reconstruction
/ðnÞ ¼ �/.

(b) Otherwise, a new parabola is constructed that moves the extrema to either n ¼ 0 or n ¼ 1. If
j�/� /nf

j < j�/� /n0
j, this is accomplished by replacing (6) with
ða0; a1; a2Þ ¼ ð�2/nf
þ 3�/; 6/̂nf � 6�/;�3/nf

þ 3�/Þ: ð19Þ

Alternatively, if j�/� /nf
j > j�/� /n0

j, then

ða0; a1; a2Þ ¼ ð/n0
; 0;�3/n0

þ 3�/Þ: ð20Þ
These steps ensure that the polynomial reconstruction within each grid cell is monotonic and that it does not
introduce any new extrema. Except for the computation of /̂mon, our approach follows that of Zerroukat et al.
[16].
2.4.3. Positivity preservation

Regardless of the approach used for monotonicity preservation, flux correction can be employed to prevent
the occurrence of negative values where even very small negative values are unacceptable, as for example, in
the advective transport of chemical species. Following the approach outlined in Section 2.4.1, the flux is writ-
ten as the sum of an upwind component and a high-order correction as in equation (13). A correction factor
sufficient to keep the scheme positive definite may be defined as
rpos
iþ1=2 ¼ max 0;min 1;

ðq/Þtdi Dx
Dtf out

i þ �2

 !" #
: ð21Þ
Note that in contrast to (16), /max, /min, and f in are not required to evaluate rpos, and in contrast to [20,21], rpos

corrects only the high-order increment, not the total flux. The small parameter �2 in (16) and (21) is chosen to
prevent division by zero.
3. Determining appropriate locations for monotonicity preservation

As noted in the introduction, smooth extrema typically experience spurious damping when monotonicity
preservation is continually enforced at every point in the domain. The present approach seeks to preserve
monotonicity only at those locations where it is most beneficial.
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3.1. Where is monotonicity preservation useful?

To appreciate where the modification of fluxes for monotonicity preservation reduces numerical error, con-
sider a one-dimensional flow with constant wind speed on the periodic domain 0 6 x 6 1 in which the initial
scalar concentration is
Fig. 1
correc
and (c
correc
coordi
w0ðxÞ ¼
0; x 6 1=8 or x > 7=8;

ð1� sinð4pxÞÞ=2; 1=8 < x 6 1=2;

1=2; 1=2 < x 6 7=8:

8><>: ð22Þ
This function has discontinuities in w0 at x ¼ 7=8, in w00 at x ¼ 1=2 and in w000 at x ¼ 1=8. Also, w0 has a smooth
extremum at x ¼ 3=8.

PPM solutions with and without monotonicity preserving flux correction (16) are compared to the exact
solution in Fig. 1a, along with a third PPM solution obtained using selective flux correction, which will be
described in Section 3.3. The numerical solution is integrated for two time steps with a CFL number of 0.5
and then shifted back one grid cell for comparison with the initial profile. The only obvious errors in the solu-
tions in Fig. 1a appear near the discontinuity at x ¼ 7=8.

The absolute errors, plotted in Fig. 1b, confirm that the largest errors for all methods occur in the imme-
diate vicinity of the discontinuity in w. Monotonicity preserving flux correction drastically reduces the error
relative to the uncorrected solution in broader regions surrounding the discontinuities in w, w0 and w00 where
the solution is locally independent of x, but such flux correction also increases the error in the immediate vicin-
ity of the smooth maximum at x ¼ 3=8 by more than two orders of magnitude. These results suggest the PPM
advection scheme can benefit from monotonicity preservation near discontinuities in the scalar field or its first
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two derivatives, but that it should be avoided near smooth extrema. Note that similar results are obtained
when monotonicity preservation is enforced through polynomial modification, rather than flux correction.

3.2. A WENO-derived smoothness metric

Several methods have been proposed for discriminating between regions of differing smoothness in the
numerical solution, including the multi-resolution analysis of polynomial interpolants [22,23], comparisons
of the magnitudes of grid-point-to-grid-point jumps in the function [24,25], and weighted essentially non-oscil-
latory (WENO) methods [9].

WENO schemes of order ð2r � 1Þ use a linear combination of lower-order polynomial interpolants of the
cell-centered fluxes, fi � f ð/iÞ over r adjacent stencils to yield a higher order scheme. Where the solution is
very smooth, the lower order interpolatants are weighted so that their linear combination will yield an order
ð2r � 1Þ scheme. Near poorly resolved gradients, the weights are adjusted to reduce the contribution from
those interpolants computed over stencils where the solution is not smooth. Letting qi;kðxÞ be the kth member
of the set of r interpolants for flux through the ‘‘downstream” boundary of the cell centered at xi, then bi;k, the
standard WENO smoothness indicator for that interpolant, is defined as
bi;k ¼
X2

m¼1

Z xiþ1=2

xi�1=2

ðDxÞ2m�1 omqi;k

oxm

� �2

dx: ð23Þ
As an example of the calculations required to evaluate one of the three b used in a fifth-order WENO method,
the most ‘‘upstream” b is
bi;0 ¼
13

12
fi�2 � 2f i�1 þ fið Þ2 þ 1

4
fi�2 � 4f i�1 þ 3f ið Þ2: ð24Þ
Further details are given in Jiang and Shu [9].
Being the sum of the norms of the first and second derivatives, bi;k is strongly sensitive to discontinuities in

wðxÞ. Hill and Pullin [26] took advantage of this property by defining
eki ¼
maxkbi;k

minkbi;k þ �
ð25Þ
and switching from a tuned center-difference method to a WENO method at those xi where eki exceeded a
threshold value. (The small constant � is set to avoid division by zero.)

3.3. Selective monotonicity preservation

We use a smoothness metric that is similar, but much simpler to compute than eki , and enforce monotonicity
preservation where the cell-to-cell variations in this metric exceed a threshold. Motivated by (23), let ci

approximate
1

2
ðDxÞ2 o2w

ox2
ðxiÞ

� �2

þ 1

2
2Dx

ow
ox
ðxiÞ

� �2

: ð26Þ
The factors of one half and two in the preceding are strictly for computational convenience since they allow ci

to be efficiently calculated as
ci ¼ /iþ1 � 2/i þ /i�1

� �2 þ /iþ1 � /i�1

� �2
h i.

2;

¼ /iþ1 � /i

� �2 þ /i � /i�1ð Þ2:
ð27Þ
A smoothness parameter kiþ1=2 is then evaluated such that
kiþ1
2
¼ maxk2Kck

mink2Kck þ �
; ð28Þ
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where K is the upstream weighted set of indices
K ¼
½i� 1; i; iþ 1�; if uiþ1

2
P 0;

½i; iþ 1; iþ 2�; otherwise;

(
ð29Þ
and � is again a small parameter that prevents division by zero.
Monotonicity preservation, using either flux correction (Section 2.4.1) or polynomial modification (Section

2.4.2), is enforced only at those cell interfaces where kiþ1=2 exceeds kmax. In the FCT approach, the correction
factor becomes
riþ1=2 ¼
rmon

iþ1=2; if kiþ1
2
> kmax;

1; otherwise;

(
ð30Þ
while the piecewise parabolic reconstruction used to compute the flux at xiþ1
2

is modified to maintain monoto-
nicity only if kiþ1

2
> kmax. In multi-dimensional problems, the selective correction of fluxes along one coordi-

nate is based solely on the smoothness of the scalar along that coordinate.
Note that in contrast to bi;k only one ci is computed per grid cell; (27) involves fewer algebraic operations

than (24), and ci is computed using the approximate solution itself, rather than the fluxes. In addition, the
stencil of grid cells required for the computation of kiþ1

2
is the same as that used to compute the PPM flux

at xiþ1
2
.

After considerable experimentation we chose to set kmax ¼ 20, which as shown in Fig. 1c, does a good job of
distinguishing regions where the function defined by (22) or its low-order derivatives are discontinuous. The
role of � in the denominator of (28) can be appreciated by considering a scalar field with a uniform back-
ground /0. If three consecutive background values are included in a five point stencil, the minimum value

of ck will be zero, and a perturbation adjacent to the background field j/i � /0j exceeding
ffiffiffiffiffiffiffiffiffiffiffi
�kmax

p
will be nec-

essary to trigger selective monotonicity preservation. We have found it effective to set � to 10�8 times the
square of a characteristic scale for the solution w.

Selective flux limiting, like WENO methods, comes very close to preserving strict positivity, but does allow
small negatives to develop in some situations where the initial data is non-negative. To guarantee that the
scheme is strictly positivity preserving, one may efficiently apply positive-definite flux correction globally as
described in Section 2.4.3. If selective limiting is applied within the FCT framework, enforcement of global
positivity preservation is achieved by replacing (30) by
riþ1=2 ¼
rmon

iþ1=2; if kiþ1
2
> kmax;

rpos
iþ1=2; otherwise;

(
ð31Þ
When polynomial modification is used to selectively enforce monotonicity, the fluxes at each interface are cor-
rected in a final pass using (13) and (21).

Another approach in which the local values of /i are used to determine where to apply monotonicity pre-
serving polynomial modification while attempting to preserve smooth extrema was proposed by Zerroukat
et al. [12]. Building on earlier criteria proposed by Sun et al. [13] and Nair et al. [14], the reconstruction of
/ at interface xiþ1

2
is judged to be a spurious grid-scale violation of monotonicity if
/̂iþ1
2
� /i

� �
/iþ1 � /̂iþ1

2

� �
< 0; ð32Þ
and at least one of the following inequalities are satisfied:
ð/i � /i�1Þð/iþ2 � /iþ1ÞP 0; ð33Þ
ð/i � /i�1Þð/i�1 � /i�2Þ 6 0; ð34Þ
ð/iþ2 � /iþ1Þð/iþ3 � /iþ2Þ 6 0; ð35Þ

/̂iþ1
2
� /i

� �
ð/i � /i�1Þ 6 0: ð36Þ
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These inequalities recognize a discontinuity through changes in slope between consecutive (or nearby) inter-
vals, independent of the amplitude of the changes in slope. Similar inequalities are employed to judge whether
an extremum in the polynomial reconstruction within the grid cell are spurious, i.e., whether the extremum in
/ðnÞ is a subgrid-scale violation of monotonicity. In contrast, the selective monotonicity preservation method
just presented recognizes discontinuities through variations in the amplitude of the cell-to-cell changes in /i –
although we prefer to characterize (27) as an approximation to the WENO-like smoothness metric (26) rather
than simply an empirical measure of cell-to-cell variations. In the two-dimensional tests that follow, selective
monotonicity preservation will be compared with a combination of the criteria (32) and (36) and further cri-
teria that recognize subgrid-scale violations of monotonicity as in [12].

4. Results

In this section, the effectiveness of selective monotonicity preservation using both flux correction and poly-
nomial modification is evaluated by comparing it to the underlying PPM method without any monotonicity
preservation, and with global monotonicity preservation. The positive-definite and semi-Lagrangian versions
(CFL > 1) of the selective monotonicity preservation scheme are also evaluated.

4.1. One-dimensional tests

In all the one-dimensional tests, q ¼ u ¼ 1 throughout the domain, which is periodic on the interval
0 6 x 6 1. The first test considered is the long-term advection of a well-resolved sine wave. The initial profile
is /ðx; t ¼ 0Þ ¼ sinð2pxÞ and Dx ¼ 1=30. Fig. 2 displays the results in the subdomain ½0; 0:5� at t ¼ 20 using the
underlying PPM scheme without any monotonicity preservation, selective monotonicity preservation and glo-
bal monotonicity preservation. Results using both the flux correction and polynomial modification
approaches to selective and global monotonicity are shown. Selective monotonicity preservation gives identi-
cal results to the underlying PPM scheme in this case, since the smoothness metric k is less than kmax every-
where. Despite the excellent numerical resolution, global monotonicity preservation noticeably degrades the
solution near the extrema and its errors in the two norm E2 and the infinity norm E1 are, respectively, five
and eight times greater for global monotonic flux correction than for selective or no flux correction. Global
monotonicity preservation through polynomial modification damps the extrema almost twice as much as does
the FCT approach and leads to correspondingly larger E2 and E1 errors (not shown).

Although the preceding example highlights the problems generated by global monotonicity preservation
near well resolved extrema, it does not provide a stringent test of the ability of the selective monotonicity pres-
ervation algorithm to distinguish between true discontinuities and extrema in coarsely resolved waves. Fig. 3
compares the same methods in a case where the initial w0ðxÞ is the sum of equal-amplitude 7:5Dx and 10Dx
waves and the solution has translated one time around the periodic domain (t ¼ 1). Despite the variability
in the function on scales close to the grid scale, k remains smaller than kmax, so no corrections are applied
to the fluxes in the selective scheme and it again yields results identical to the underlying PPM method. On
the other hand, global monotonicity preservation damps the initial profile more vigorously, eliminating a pair
of smooth extrema near x ¼ 0:5 and producing roughly twice the E2 and E1 errors.
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Fig. 2. Advection of a well-resolved sine wave 20 times around the domain: (a) no monotonicity preservation, (b) selective monotonicity
preservation, and (c) global monotonicity preservation. The exact solution is plotted in each panel as the thin line. In (b) and (c) the thick
solid line shows the FCT result, the dash-dotted line that for polynomial modification; the E2 and E1 are for the FCT method.
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domain is plotted.
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The performance of each scheme on a problem with discontinuities is evaluated in Fig. 4, in which an initial
top hat profile, with w0ðxÞ ¼ 1 for 0:4 6 x 6 0:6 and zero elsewhere, is advected five times around the periodic
domain (t ¼ 5). When Dx ¼ 0:02 (top row), the solutions generated by selective and global monotonicity pres-
ervation are nearly identical, and both preserve the top hat profile reasonably well. Toward the end of the inte-
gration, selective flux correction is applied at 17 of the 50 points in the numerical domain when using FCT
(diamonds in Fig. 4) and 15 using polynomial modification (plus signs in Fig. 4). As expected, the uncorrected
PPM scheme produces over- and undershoots. The E2 and E1 errors are similar for all methods.

When the same experiment is repeated with Dx doubled to 0.04, the poorly resolved flat top is transformed
into a single peak by the weak numerical diffusion in the underlying PPM scheme (bottom row in Fig. 4).
Small overshoots and significant undershoots are produced by the uncorrected scheme. Selective flux correc-
tion produces slight damping of the maximum, no perceptible undershoots, and a somewhat smaller E1 error
than the other methods. Global monotonicity correction damps the maximum much more rapidly. The fidelity
of the maximum at t ¼ 5 obtained using selective flux correction is, however, somewhat deceptive because
some overshooting occurred early in the simulation after the top hat evolved into isolated peak with sufficient
smoothness that k < kmax at the peak. This behavior represents both the weakness and the strength of selective
flux correction. Since monotonicity is only maintained near perceived discontinuities, the method is not strictly
monotonicity preserving. Yet the absence of monotonicity preservation in smooth regions is what allows the
underlying numerical method to achieve its full high-order accuracy in those regions. The violations of mono-
tonicity are, however, usually very small.
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Fig. 4. As in Fig. 2, except that a top hat profile with Dx ¼ 0:02 (top) and Dx ¼ 0:04 (bottom) is advected through the domain five times.
Only the subdomain 0:2 6 x 6 0:8 is shown. The locations where selective flux correction is applied during the final time step are marked
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As a final 1D test illustrating how selective limiting alone is not able to guarantee a strictly positive solution,
the initial condition was specified as
3 To
given i
w0ðxÞ ¼ max½0; sinð6pxÞ þ sinð8pxÞ�; ð37Þ

which is the positive part of the function considered in connection with Fig. 3. (Note that again, Dx ¼ 1=30.)
As shown in Fig. 5, after one circuit around the periodic domain (t ¼ 1), global monotonicity preservation
keeps the solution strictly positive, but it also produces much more damping in the peaks than the unmodified
PPM scheme. The peaks in the selective monotonicity preservation solution are, on the other hand, almost
identical to those given by the unmodified PPM scheme. Selective flux correction also significantly reduces
the magnitude of the negative undershoots generated by the unmodified PPM method, but does not eliminate
them completely. These undershoots allowed by selective limiting might be deemed an acceptable tradeoff if
the background concentration were non-zero. Strict positivity can nevertheless be maintained using the
FCT correction presented in Section 2.4.3.

When used to enforce global monotonicity preservation, polynomial modification generates considerably
more damping than the flux correction approach, as evident in Figs. 2–5. Yet these two methods yield roughly
similar results when they are applied selectively, although polynomial modification still produces a slight ten-
dency toward stronger damping.

4.2. Two-dimensional tests

In many problems involving scalar transport, poorly resolved steep gradients develop from initially well-
resolved fields due to stretching and deformation by the velocity field. LeVeque [27] proposed a test problem
to model this phenomena using a time-varying swirling flow that deforms an initially well resolved circular
patch into a narrow crescent before reversing direction and returning it back to its original shape and position.
Very similar tests were presented in [15,21]. One possible weakness of such tests is that the phase errors for
each Fourier mode could partially or completely cancel when the velocity reverses.

Here the possibility of such cancellation is reduced by defining the reversing deformation flow as a pertur-
bation to a steady flow in solid body rotation, so that the velocity at any point away from the origin never
reverses.Our velocity field3 is defined on the unit square 0 6 x; y 6 1 as
uðx; y; tÞ ¼ uhðr; tÞ sinðhÞ; vðx; y; tÞ ¼ �uhðr; tÞ cosðhÞ; ð38Þ

where
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy � 0:5Þ2

q
; h ¼ tan�1 y � 0:5

x� 0:5

� �
;

uhðr; tÞ ¼
4pr
T

1� cos
2pt
T

� �
1� ð4rÞ6

1þ ð4rÞ6

" #
:

ensure that the discrete velocity field is divergence-free, the velocities in the tests shown here are computed from a streamfunction
n the Appendix.
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The density is uniform with q ¼ 1, and the initial concentration field is smooth and circularly symmetric
Fig. 6.
(a) t ¼
wðx; y; t ¼ 0Þ ¼ w0 þ
1þcosðp~rÞ

2

� �2

; ~r 6 1;

w0; ~r > 1;

8<: ; ð39Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where ~r ¼ 5 ðx� 0:3Þ2 þ ðy � 0:5Þ2. In the following, the background scalar concentration w0 is zero unless
otherwise specified.

The evolution of the true solution is periodic over time T, as illustrated in Fig. 6. At t ¼ 0 contour lines for
the initial scalar field are circular and the tangential velocity is weaker than that for solid body rotation where
r < 1=4, but where r > 1=4, it is stronger. At T=4 the scalar field has been stretched into a crescent with the
highest concentrations at its tail and the perturbation deformation flow is zero, so that the total flow is instan-
taneously in solid body rotation. At T=2 the distribution of the scalar is again identical to wðx; y; t ¼ 0Þ and the
swirling flow is stronger than solid body rotation for r < 1=4 and weaker for r > 1=4. By t ¼ 3T=4 the velocity
is again in solid body rotation, and the scalar is distributed in a crescent with the highest concentrations at its
head.

Nine numerical solutions obtained using the grid spacing Dx ¼ Dy ¼ 0:02 are compared at t ¼ T in
Fig. 7. The location of the correct solution, which is identical to wðx; y; t ¼ 0Þ is shown by thick solid con-
tours. The numerical solution never achieves significant amplitude at the lateral boundaries, so the lateral
The velocity (vectors) and scalar field w (contoured from 0.05 to 0.95 by 0.1) for the two-dimensional deformation-rotation test at:
0; T , (b) t ¼ T=4, (c) t ¼ T=2 and (d) t ¼ 3T=4.
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boundary conditions (zero scalar gradient at inflow, linear scalar extrapolation at outflow) have no influence
on these results. The time step is chosen so that the maximum CFL number during the split steps
maxðjuj=Dx; jvj=DyÞDt is unity.

Undershoots of more than 10% of the initial maximum are present in the uncorrected PPM solution
(Fig. 7a), although the amplitude of the initial peak is relatively well preserved. Selective monotonicity pres-
ervation (not shown) produces much smaller undershoots; the minimum value is �1:7� 10�4 using flux cor-
rection. These small undershoots are completely eliminated through the addition of positive-definite flux
correction using (21), as shown in Fig. 7b and c. Selective flux correction preserves almost as much of the ini-
tial amplitude as the uncorrected PPM. On the other hand, as in the one-dimensional tests, applying mono-
tonicity-preserving flux correction everywhere (Fig. 7d) significantly damps the peak values. Increasing the
time step by a factor of four and using selective and positivity preserving flux correction with the semi-
Lagrangian algorithm (10) and (11) gives a very similar result to that obtained with a maximum CFL number
of unity, but the CFLmax ¼ 4 solution has slightly more amplitude (Fig. 7e and f).
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Two WENO solutions were also computed and plotted in Fig. 7. The unsplit solution is the fifth-order
WENO method [9] integrated with the optimal third-order TVD Runge–Kutta scheme of Gottlieb and Shu
[28]. Perhaps the only aspect of our implementation that is not completely standard is that only that part
of the flux at ðxiþ1=2; yjÞ due to /iþ1=2;j is evaluated using WENO interpolation. The other factor in the flux,
the velocity, is specified on a staggered mesh such that the divergence in (8) is exactly zero. To maintain sta-
bility in two dimensions, the time step was reduced so that the maximum CFL number along each axis was 0.5.
In fact CFLmax need only be reduced to

ffiffiffi
2
p

=2 to maintain stability, but here the focus is on the accuracy of the
unsplit WENO method, not its efficiency, since the time-split WENO scheme will be more efficient. The time-
split WENO solution is integrated with CFLmax ¼ 1 using the mass-corrected splitting (9). All three Runge–
Kutta iterations were evaluated along the direction of the first split step before advancing to the second split
step.

As evident in Fig. 7, the split WENO solution is similar to, and the unsplit WENO solution is better than,
the PPM method with global monotonicity preservation, but both are inferior to the PPM with selective
monotonicity preservation. The small negative undershoots in the WENO solutions could be eliminated using
the same type of positivity correction applied in conjunction with selective monotonicity preservation in
Fig. 7b and c.

The solution shown in Fig. 7i (hereafter ZWS PCM) is obtained by polynomial modification at cell faces
flagged by the selection criteria (32) and (36). As in Zerroukat et al. [12] the underlying polynomial reconstruc-
tion is piecewise cubic (the PCM method), additional tests for subgrid-scale violation of monotonicity are
applied within each cell, and the approximation is modified to ensure it is monotonic using the method
described in [12,16] where violations of monotonicity are found. Positivity preservation in the approximation
is guaranteed through further modifications, where necessary. In the results presented here, this scheme is
implemented in a flux-based formulation with dimension-splitting as in Section 2.2 rather than the unsplit
semi-Lagrangian method given in [12]. The split formulation keeps the method directly comparable to the
other schemes used here and is likely computationally more efficient the original unsplit method. At the res-
olution of Dx ¼ Dy ¼ 0:02, the ZWS scheme is similar in accuracy to the PPM solutions with selective mono-
tonicity and global positivity preservation.

Fig. 8 shows that substantial improvement occurs when the same simulations are repeated at the higher
resolution Dx ¼ Dy ¼ 0:01, although the relative performance of the PPM-based methods is unchanged.
The uncorrected PPM method preserves the maximum amplitude well, but still generates strong undershoots.
Global monotonicity-preserving flux correction continues to strongly damp the peak value. The combination
of selective monotonicity preservation and global positivity-preserving flux correction both preserves the max-
imum and avoids undershoots. The lowest E2 and E1 errors are obtained using the selective, positivity-pre-
serving scheme using flux correction with CFLmax ¼ 4, while the most accurate peak amplitude is found
using the PCM-based ZWS scheme. At this resolution, both WENO solutions are clearly superior to the glo-
bal monotonicity-preserving PPM, but still inferior to those generated using the PPM method with selective
monotonicity and global positivity preservation.

When the resolution is further improved to Dx ¼ Dy ¼ 0:005, all solutions closely approximate the correct
result, except for that obtained using the PPM method with global monotonicity preserving flux correction. As
illustrated in Fig. 9a, global flux correction continues to produce significant errors in the shape and strength of
the peak in the tracer distribution, a situation similar to that already encountered in Fig. 2. The solution
obtained using selective flux correction with positivity preservation, shown in Fig. 9b, is representative of
the other solutions. Finally, although its E2 and E1 errors are small, the uncorrected PPM solution (not
shown) does generate undershoots as strong as �0.017. The tests shown in Figs. 7–9 also provide a check
on the importance of errors introduced by time splitting. Although at each resolution, the unsplit WENO solu-
tion is superior to that generated by the split WENO method, it is inferior to those obtained using the time-
split PPM method with selective flux correction and the time-split ZWS PCM scheme, neither of which appear
to be degraded by errors introduced by time-splitting.

The locations where selective flux correction is applied in simulations of the same problem, except that a
non-zero background concentration (w0 ¼ 1) is added, are shown in Fig. 10 for time T=4, a time of maximum
scalar deformation. Such correction is only applied in a relatively small fraction of the total points in the
domain and is focused in zones where poorly resolved gradients abut regions where the scalar concentration
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(b) 0.01, (c) 0.005. Each cell interface where corrections are applied is indicated by a line segment. The scalar concentration field is
contoured gray lines at values of 0.99, 1.01, 1.05, 1.35, 1.65, 1.95. Values less than 0.99 are lightly shaded. Panel (d) shows the scalar
concentrations at the same instant using the monotonic, positive-definite filter of Zerroukat et al. [12] with a grid spacing of 0.02, as in
panel (a).
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is approximately equal to the uniform background value. Since in this case the background concentration is
non-zero, undershoots that would be eliminated by positive-definite flux correction with w0 ¼ 0 are revealed.
Selective monotonicity preservation (here using polynomial modification) effectively minimizes these under-
shoots, holding them to values of order 10�4. In comparison, the undershoots generated by the uncorrected
PPM method (not shown) are three orders of magnitude larger (0.122, 0.084 and 0.017 for grid spacings of
0.02, 0.01 and 0.005, respectively).

The ZWS PCM solution for the coarsest resolution is shown in Fig. 10d, and is similar to that obtained
using the PPM method with selective monotonicity preservation except that it allows much larger under-
shoots. Such undershoots would be eliminated by the positivity preserving step in the ZWS algorithm if the
background concentration were zero. Nevertheless, these tests, with w0 ¼ 1, help reveal the ability of schemes
that are not globally monotonicity preserving to avoid undershoots.4

A more stringent test of the treatment of discontinuities is also considered by replacing the smooth initial
condition for the passive scalar (39) with the two-dimensional square wave
4 No
perfor
wðx; y; t ¼ 0Þ ¼
1; maxðjx� 0:3j; jy � 0:5jÞ 6 0:15;

0; otherwise

	
ð40Þ
and again simulating the transport of w in the rotating and deforming flow (38). The approximations to
wðx; y; T Þ obtained using a spatial resolution of Dx ¼ Dy ¼ 0:01 are shown in Fig. 11. In general, the
square-wave initial condition produces a tendency for some overshoots in all but the monotonicity preserving
FCT solution (Fig. 38a). (Positive-definite flux correction prevents undershoots in all solutions except that
generated by the WENO scheme.)
te that the original ZWS monotonicity preserving algorithm was designed for use with a unsplit semi-Lagrangian scheme and may
m differently in that context.
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P.N. Blossey, D.R. Durran / Journal of Computational Physics 227 (2008) 5160–5183 5177
At time T, the overshoots allowed by selective monotonicity preservation are negligible or small (Fig. 38b, c
and e). The WENO solution (Fig. 38d) generates modest overshoots of 5.9%, and the ZWS PCM method
(Fig. 38f) produces overshoots greater of 21%. The evolution of the overshoots during the simulation is, how-
ever, somewhat more complicated that might be suggested by a simple examination of the fields at t ¼ T .

Fig. 12 shows the maximum value of w over the full spatial domain as a function of time for the PPM with
selective positivity preservation enforced by polynomial modification, the WENO method and the ZWS PCM.
The maximum overshoot in the ZWS-PCM solution develops rapidly into a 10% error in amplitude that then
increases gradually to 21% over the remainder of the simulation. The maximum overshoot produced by the
WENO method develops in a less regular manner and is almost a maximum by 0:5T ; it then decays slightly
and slowly redevelops over the remainder of the simulation. The selectively limited PPM generates a maximum
0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3
Selective, Positive (PMod)
Unsplit WENO
Monotonic, Positive PCM (ZWS)

Fig. 12. Time variation of the maximum value over the full spatial domain maxx;y/ðx; y; tÞ with the square-wave initial condition and a
rotating, deforming flow for three numerical methods.
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overshoot whose early-time behavior is relatively chaotic and similar to that of the WENO method until
t ¼ 0:15T , whereupon the overshoot appears to saturate at about 5.3% before decaying back to almost zero,
and remaining near zero for simulation times greater that 0:6T . When selective positivity preservation is
enforced through flux correction (not shown), the errors are a bit larger than those generated by polynomial
modification (with a maximum of 7.7%), and they persist throughout a slightly longer period (not decaying to
very small values until roughly 0:7T ). Despite this complicated time-evolution, the PPM methods with selec-
tive monotonicity preservation clearly do the best job of the reducing the maximum overshoot in this test –
except of course, that all overshoots are eliminated using global monotonicity preservation.

A final classical two-dimensional advection test is taken from [29, p. 460], where a pointed cone and a
square wave undergo one period of solid body rotation. The velocity field is as in (38) with uh ¼ 2pr, and
the initial scalar field is
Fig. 13
metho
correc
0.05 an
wðx; y; t ¼ 0Þ ¼
1; maxðjx� 0:675j; jy � 0:5jÞ 6 0:125;

1� r̂; r̂ < 1;

0; otherwise;

8><>: ð41Þ
where r̂ ¼ ½ðx� 0:275Þ2 þ ðy � 0:5Þ2��1=2
=0:175. The original formulation of the problem in [29] has been al-

tered only to re-scale the coordinates so that x; y lie in [0, 1] rather than [�1,1]. Solutions computed using selec-
tive monotonicity preservation through polynomial modification with and without positive-definite flux
correction, along with the result for the unsplit WENO method are shown in Fig. 13. The overall performance
of each method is very good, and suggests this test is somewhat less challenging than those considered previ-
ously. These results also reinforce our previous findings that the undershoots allowed by selective monotonic-
ity preservation (without positivity preservation) are small. In this case the magnitude of such undershoots are
half that generated by the unsplit WENO method.

4.3. Convergence results

Empirically determined convergence rates for each of the methods used to simulate w in the rotating and
deforming flow (38) with smooth initial conditions (39) may be estimated from Fig. 14, which shows the E2

and E1 errors from a series of simulations in which the spatial and temporal resolutions were repeatedly dou-
bled. Enforcing global monotonicity preservation in the PPM method leads to second-order convergence in
the L2 norm and slower-than-second-order convergence in the L1 norm. In contrast, third-order convergence
in both the L2 and L1 norms is obtained using without any flux correction and with selective monotonicity
preservation implemented either through FCT or polynomial modification together with global positivity
preservation. The ZWS PCM method converges at a rate slightly faster than third order once the solution
is well resolved. Since Strang splitting is only second-order in time, these third-order (and higher, in the case
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of the ZWS PCM) convergence rates suggest that spatial truncation errors are dominating the total error in
the numerical solution. Further evidence of the relatively minor impact of the time truncation error is pro-
vided by the similarity of the CFLmax ¼ 1 and CFLmax ¼ 4 errors at all but the finest resolution.

Slightly higher rates of convergence can be obtained using selective monotonicity preservation in combina-
tion with the piecewise cubic, rather than the piecewise parabolic method. As expected the benefits of higher-
order are most pronounced when the solution is smooth and well resolved. Since the modest additional com-
putation required to use selective monotonicity preservation with the PCM produces only minor improve-
ments in the preceding test problems, we have chosen the simpler PPM for our polynomial reconstructions.

4.4. Computation time

How much computational expense is required to obtain the preceding results? The times required to inte-
grate the two dimensional deformation flow problem (38) to t ¼ 3T with the square wave initial scalar distri-
bution (40) and CFLmax ¼ 1 are given for three different numerical resolutions in Table 1. Not surprisingly, the
unmodified PPM method is the fastest. The next fastest scheme, which is roughly 28% slower, is global mono-
tonicity preservation enforced by modification of the piecewise parabolic polynomial reconstruction, however
as evident in the one-dimensional tests (Figs. 2–5), this method produces more damping of both smooth and
non-smooth extrema than any of the other schemes.
Table 1
Time required for the rotation and deformation test running optimized FORTRAN 95 code on a 1.3 GHz Itanium 2 processor as a
function of flux correction methodology, underlying numerical method, and spatial resolution

Monotonicity preservation Number of grid cells

(underlying scheme) 50 � 50 100 � 100 200 � 200

None (PPM) 0.59 4.24 45.0
Global PMod (PPM) 0.76 5.41 57.9
Selective PMod (PPM) 0.90 6.48 65.2
Sel. Pos. PMod (PPM) 1.10 7.88 77.0
Global FCT (PPM) 1.14 8.07 80.4
Selective FCT (PPM) 1.04 7.07 68.8
Sel. Pos. FCT (PPM) 1.20 8.22 77.9
Mon. Pos. ZWS (PCM) 1.56 11.38 104.6
None (Split WENO) 2.79 20.57 171.4

Each time is in seconds and is the average from five identical simulations.
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The next fastest method is selective monotonicity preservation applied through modification of the PPM
polynomial, which performed very well in our tests. The FCT approaches to monotonicity preservation, both
global and selective required somewhat more computation time than the corresponding polynomial-modifica-
tion methods. Interestingly, the selective FCT approach to monotonicity preservation is faster than the glob-
ally monotonicity preserving FCT scheme because monotonicity preservation is not necessary (or beneficial)
at most locations within the domain (e.g. Fig. 10), and therefore, selective monotonicity preservation reduces
the computation required in the flux-correction step. (This reduction in computational cost is partially offset
by the extra computation needed to evaluate the smoothness parameter k at each cell interface.)

As also evident in Table 1, the additional computation required to ensure that the selective monotonicity
preserving schemes are strictly positive adds between 12% and 22% to the cost of the method, but still yields a
relatively economical scheme. For example, selective monotonicity preservation through polynomial modifi-
cation with global positivity preservation remains faster at all resolutions than the standard FCT scheme with
global monotonicity preservation. It is also roughly 40% faster than the ZWS PCM method, although about
half of this speed difference is due to the use of piecewise parabolas instead of piecewise cubics in our method.5

Recently, Zerroukat et al. [30] has suggested that parabolic splines can be more efficient and more accurate
than the standard PPM approach, and the use of such splines might further reduce the computation times
given in Table 1.

Finally, the split WENO method is much more costly that the other alternatives, primarily because of the
three iterations required to execute the third order Runge–Kutta time integration. The unsplit WENO simu-
lations required roughly twice the time as the split WENO method because the time step was halved in the
unsplit integrations. Although the time step only needs to be reduced by a factor of 1=

ffiffiffi
2
p

to preserve stability,
even using the maximum stable time step, the unsplit WENO method would be unattractive from an efficiency
standpoint. In addition, the speed of the PPM- and PCM-based methods can be dramatically increased using
their semi-Lagrangian formulations. Although it is likely that the split WENO method could also be imple-
mented in a semi-Lagrangian form, we have not pursued this since at least for this test, it would remain less
accurate and much slower than the PPM method with selective monotonicity preservation enforced through
polynomial modification.

4.5. Tracer correlations

If / and v are the numerical approximations to two tracers, both of which satisfy (1), and at some time tn

and for all xi,
5 Wh
cubics
/n
i ¼ avn

i þ l; ð42Þ

where a and l are constants, then the selective monotonicity preserving PPM method using flux correction
maintains the linear correlation between / and v at all future time steps. This may be derived by noting that
f upð/Þ ¼ af upðvÞ þ f upðlÞ and f corð/Þ ¼ af corðvÞ þ f corðlÞ. Since f corðlÞ ¼ 0, it can be seen that
rmonð/Þ ¼ rmonðvÞ. The linear correlation between / and n is also preserved by selective monotonicity preser-
vation using polynomial modification.

If positivity preserving flux correction is also applied, then the correlation between / and v is maintained
provided l ¼ 0, but if l 6¼ 0, the relation rposð/Þ ¼ rposðvÞ is not guaranteed and the correlation will generally
not be maintained. Linear correlations of the form (42) with l 6¼ 0 can nevertheless be maintained when apply-
ing positivity preserving flux correction if the same value of rpos

iþ1=2 is used to correct the fluxes of both chemical
species at xiþ1=2 by replacing (31) with
riþ1=2 ¼
rmon

iþ1=2; ifkiþ1
2
> kmax;

min rpos
iþ1=2ð/Þ; r

pos
iþ1=2ðvÞ

h i
otherwise:

8<: ð43Þ
en selective monotonicity preservation through polynomial modification with positivity preservation was tested with piecewise
(rather than piecewise parabolas), the method was 18% faster than the ZWS PCM for this test.
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5. Conclusion

A hybrid approach for modeling scalar advection has been proposed in which monotonicity preservation is
enforced solely at points where a WENO-like metric indicates the presence of discontinuities or poorly-
resolved gradients. This metric is evaluated by determining the cell-to-cell variations in the sum of the squares
of the normalized first and second spatial derivatives of the scalar field, and flux-correction or polynomial
modification is applied only at those points where such variations exceed a threshold value. Elsewhere, includ-
ing the regions surrounding smooth extrema, the high-order accuracy of the underlying numerical method is
preserved.

This approach, which we call ‘‘selective monotonicity preservation,” can be used in conjunction with many
different underlying advection schemes and with different methods for monotonicity preservation. Here we
have demonstrated its performance using a variant of the PPM proposed by Skamarock [15], which allows
efficient mass-conservative integrations in a semi-Lagrangian formulation at CFL numbers greater than unity.
Both flux correction and modification of the underlying polynomial reconstruction have been tested in the
selective monotonicity preservation framework and have been shown to perform similarly. Flux correction
generally gave better amplitude preservation in the two-dimensional cases considered here, while polynomial
modification executed slightly faster and generated somewhat smaller overshoots and undershoots.

Among the test problems considered is a non-reversing swirling shearing flow that allows an easy compar-
ison between the numerical and exact solutions. Using the PPM scheme on this problem, empirically deter-
mined convergence rates improved from second order in the L2 norm and less-than-second order in the L1
norm when monotonicity preservation was enforced at every point, to fully third order using selective mono-
tonicity preservation.

Although in a given time step, monotonicity is preserved in those regions where the WENO-like criteria
indicates a poorly resolved sharp gradient, this method does not guarantee the global solution will be free
from all overshoots and undershoots. In all the cases that we have tested, those undershoots and overshoots
that are occasionally generated are very small. It is our view that some degree of over- and undershoots must
be tolerated if genuinely high-order accuracy is to be maintained in the vicinity of smooth extrema.

If negative tracer concentrations must be avoided, as in the simulation of chemically reacting species,
positivity-preserving flux correction may be applied at every point with only minimal additional computation.
In our swirling flow tests, the computational time required to apply selective monotonicity preservation
together with global positivity-preserving flux correction was comparable to that required to apply monoto-
nicity preserving flux correction at every cell interface, and was much less than that used by standard WENO
methods.
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Appendix A. Expressions for negative fluxes

A.1. PPM flux for uiþ1=2 < 0

When uiþ1=2 < 0, equation (4) becomes
f ppm

iþ1
2

¼ ðquÞiþ1
2

/n
iþ1 þ ð1þ CÞ /̂iþ1

2
� /n

iþ1

� �
þ Cð1þ CÞ /̂iþ1

2
� 2/n

iþ1 þ /̂iþ3
2

� �h i
; ðA:1Þ
where /̂ and C are defined below (4).
For negative velocities at xiþ1

2
, the parabolic reconstruction of the scalar distribution may be defined as in

equation (5), except that the coordinate n increases with x in this case, as n ¼ x� xiþ1
2

� �.
ðxiþ3=2 � xiþ1

2
Þ, and

that �/ ¼ /iþ1, /n0
¼ /̂iþ1

2
and /nf

¼ /̂iþ3=2.
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A.2. Semi-Lagrangian CFL number and departure index calculation for uiþ1=2 < 0.

Choose eC and s such that �1 6 eC 6 0 and
eCqn
i�sþ1 �

X�1

k¼s

qn
i�k ¼

Dt
Dx
ðquÞiþ1

2
; ðA:2Þ
while noting that s 6 0 in this case. Analogous to (11), the scalar mass flux at xiþ1=2 can then be computed as
fiþ1
2
¼ 1

Dt

X�1

k¼s

ðqn/nDxÞi�k þ ~f i�sþ1
2
: ðA:3Þ
A.3. Flux correction for f cor
iþ1=2 < 0

When f cor
iþ1=2 < 0, the renormalization factor (16) for monotonic flux correction is
rmon
iþ1

2
¼ max 0;min 1;

½q0i/
max
i � ðq/Þtdi �Dx

Dtf in
i þ �2

;
½ðq/Þtdiþ1 � q0iþ1/

min
iþ1 �Dx

Dtf out
iþ1 þ �2

 !" #
; ðA:4Þ
where /td
i , /max;min

i , f in
i and f out

iþ1 are as in Section 2.1. Note that �2 ¼ 10�16 for the results shown in this paper.
The renormalization factor for positivity preservation (21) in this case is
rpos

iþ1
2

¼ max 0;min 1;
ðq/Þtdiþ1Dx

Dtf out
iþ1 þ �2

 !" #
: ðA:5Þ
A.4. Streamfunction for two-dimensional tests

To ensure that the velocity field in the two-dimensional tests is discretely divergence-free, the velocities
through cell faces are computed using finite differences from the following streamfunction
Wðr; tÞ ¼ 4p
T

(
r2

2
þ cos

2pt
T

� �
r2

2
þ 1

96
logð1� 16r2 þ 256r4Þ � 1

48
logð1þ 16r2Þ




�
ffiffiffi
3
p

48
arctan

�1þ 32r2ffiffiffi
3
p

� �#)
ðA:6Þ
evaluated at the corners of the grid cells, e.g. ðxiþ1=2; yjþ1=2Þ. Note that r is defined below (38). This streamfunc-
tion was integrated from the expression for uhðr;tÞ using MAPLE.

References

[1] J. Boris, D. Book, Flux-corrected transport. 1. SHASTA, A fluid transport algorithm that works, J. Comput. Phys. 11 (1973) 38–69.
[2] S. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys. 31 (1979) 335–362.
[3] B. van Leer, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order

scheme, J. Comput. Phys. 14 (1974) 361–370.
[4] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21 (1984) 995–1011.
[5] R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, UK, 2002.
[6] P. Colella, P. Woodward, The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys. 54 (1984) 174–201.
[7] R. Carpenter, K. Droegemeier, P. Woodward, C. Hane, Application of the piecewise parabolic method (PPM) to meteorological

modeling, Mon. Weather Rev. 118 (1990) 586–612.
[8] X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1994) 200–212.
[9] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228.

[10] V.G. Weirs, G.V. Candler, Optimization of weighted ENO schemes for DNS of compressible turbulence, in: Proceedings of the 13th
AIAA Computational Fluid Dynamics Conference, 1997, pp. 528–538 (AIAA Paper No. 97–1940).

[11] J. Qiu, C.-W. Shu, Runge–Kutta discontinuous Galerkin methods using WENO limiters, SIAM J. Sci. Comput. 26 (2005) 907–929.



P.N. Blossey, D.R. Durran / Journal of Computational Physics 227 (2008) 5160–5183 5183
[12] M. Zerroukat, N. Wood, A. Staniforth, A monotonic and positive-definite filter for a semi-Lagrangian inherently conserving and
efficient (SLICE) scheme, Q. J. Roy. Meteor. Soc. 131 (2005) 2923–2936.

[13] W.-Y. Sun, K.-S. Yeh, R.-Y. Sun, A simple semi-Lagrangian scheme for advection equations, Q. J. Roy. Meteor. Soc. 122 (1996)
1211–1226.
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